连续事件概率计算和树状图应用 - 知识点总结与练习题
核心概念:树状图用于展示连续事件的结果与概率,通过"分支相乘(乘法原理)"计算联合概率,"路径相加(加法原理)"计算互斥事件的概率。
联合概率(分支相乘):连续事件的联合概率等于各分支概率的乘积
边缘概率(路径相加):互斥事件的概率等于各路径概率的和
条件概率:\[P(B|A) = \frac{P(A \cap B)}{P(A)}\]
| 特征 | 放回实验 | 不放回实验 |
|---|---|---|
| 概率变化 | 每次概率不变 | 每次概率变化 |
| 总数影响 | 总数保持不变 | 总数每次减少 |
| 顺序敏感性 | 顺序不影响 | 顺序影响结果 |
| 计算示例 | \(\frac{k}{n} imes \frac{k}{n}\) | \(\frac{k}{n} imes \frac{k-1}{n-1}\) |
题目:Kaan参加两场自行车比赛。他赢得第一场比赛的概率是0.6,赢得第二场比赛的概率是0.7。计算他至少赢得一场比赛的概率。
至少赢得一场比赛的概率 = 1 - 两场都输掉的概率
题目:Aleena有两枚硬币。一枚是公平的,一面是正面,另一面是反面。另一枚是作弊硬币,两面都是反面。Aleena随机选择一枚硬币并翻转。
a) 求硬币正面朝上的概率
b) 已知硬币反面朝上,求她选择的是公平硬币的概率
a) 计算正面朝上的概率
P(正面) = P(公平硬币) × P(公平硬币正面) + P(作弊硬币) × P(作弊硬币正面)
= 0.5 × 0.5 + 0.5 × 0 = 0.25
b) 计算条件概率
P(反面) = P(公平硬币) × P(公平硬币反面) + P(作弊硬币) × P(作弊硬币反面)
= 0.5 × 0.5 + 0.5 × 1 = 0.75
P(公平硬币 | 反面) = P(公平硬币且反面) / P(反面) = (0.5 × 0.5) / 0.75 = 1/3
Kaan takes part in two cycle races. The probability that he wins the first race is 0.6. The probability that he wins the second race is 0.7. Work out the probability that Kaan wins at least one race.
答题区域:
Aleena has two coins. One is fair, with a head on one side and a tail on the other. The second is a trick coin and has a tail on both sides. Aleena picks up one of the coins at random and flips it.
a) Find the probability that it lands heads up.
b) Given that it lands tails up, find the probability that she picked up the fair coin.
答题区域:
A box of jelly beans contains 7 sweet flavours and 3 sour flavours. Two of the jelly beans are taken one after the other and eaten. Emilia wants to find the probability that both jelly beans eaten are sweet, given that at least one of them is.
Identify Emilia's mistake and find the correct probability.
答题区域:
一个袋子里有5个红球和3个蓝球。从袋子里不放回地抽取两个球。求:
a) 两个球都是红球的概率
b) 第一个球是红球且第二个球是蓝球的概率
c) 至少有一个球是红球的概率
答题区域:
解答过程:
至少赢得一场比赛的概率 = 1 - 两场都输掉的概率
P(输掉第一场) = 1 - 0.6 = 0.4
P(输掉第二场) = 1 - 0.7 = 0.3
P(输掉两场) = 0.4 × 0.3 = 0.12
P(至少赢得一场) = 1 - 0.12 = 0.88
解答过程:
a) P(正面) = P(公平硬币) × P(公平硬币正面) + P(作弊硬币) × P(作弊硬币正面)
= 0.5 × 0.5 + 0.5 × 0 = 0.25
b) 首先计算反面朝上的概率:
P(反面) = 0.5 × 0.5 + 0.5 × 1 = 0.75
P(公平硬币 | 反面) = P(公平硬币且反面) / P(反面) = (0.5 × 0.5) / 0.75 = 1/3
解答过程:
Emilia的错误:她假设抽取是放回的(使用了 \( \frac{7}{10} imes \frac{7}{10} \)),但实际上是不放回的。
正确步骤:
P(两个都是甜味) = \( \frac{7}{10} imes \frac{6}{9} = \frac{7}{15} \)
P(至少一个甜味) = 1 - P(两个都是酸味) = 1 - \( \frac{3}{10} imes \frac{2}{9} = \frac{14}{15} \)
P(两个都是甜味 | 至少一个甜味) = \( \frac{\frac{7}{15}}{\frac{14}{15}} = \frac{1}{2} \)
解答过程:
a) 两个球都是红球:\( \frac{5}{8} imes \frac{4}{7} = \frac{20}{56} = \frac{5}{14} \)
b) 第一个球是红球且第二个球是蓝球:\( \frac{5}{8} imes \frac{3}{7} = \frac{15}{56} \)
c) 至少有一个球是红球:1 - 两个都是蓝球的概率 = \( 1 - \frac{3}{8} imes \frac{2}{7} = 1 - \frac{6}{56} = \frac{50}{56} = \frac{25}{28} \)